61 research outputs found

    Behaviour-dependent predation risk in swimming zooplankters

    Get PDF
    Background: The survival of zooplanktonic organisms is determined by their capability of moving in a fluid environment, trading off between the necessities of finding prey and avoiding predators. In previous numerical experiments, we concentrated on the relationship between natatorial modality and encounter success of a virtual copepod swimming in the presence of prey distributed either in patches or uniformly in the environment. Results: In this contribution, we extend this simulation framework to the encounter with chaetognaths, the primary copepod predators, considering different motion rules as a proxy of different swimming strategies and looking at the influence of the concentration of predators and the size of their detection radius in posing a risk on copepod survival. The outcomes of our simulations indicate that more convoluted trajectories are more vulnerable to predator encounter while straighter motions reduce predation risk. Conclusions: Our results are then complemented with those obtained in our previous studies to perform a general cost-benefit analysis of zooplankton motion

    Particle exchange and residence times in the North Western Mediterranean

    Get PDF
    The effects of the hydrodynamic processes on the distribution of passive drifters in the Gulf of Lions (GoL) have been investigated using a Lagrangian approach coupled with a 3D circulation model (Symphonie). We consider passive drifters, for which transport processes are determined solely by the 3D flow fields, which are in turn primarily forced by the North Mediterranean Current (NMC) and by the Rhˆone fresh-water inputs. The model reproduces 600 3D Lagrangian trajectories of particles released along the coastal area of the GoL during the winter period (January-February). The GoL has been divided into four sectors, each corresponding to a zone playing a strategic role in the hydrodynamics of the study area. The macroscopic characteristics of the transport on the shelf zone are analyzed in terms of total concentration and residence times of the cluster released in the basin. Particle distributions are strongly related to the mesoscale and sub-mesoscale hydrodynamic structures on the shelf and to the offshore circulation associated with the NMC. Two crucial areas are identified: a dispersive zone, corresponding to the central part of the continental shelf, and a wide offshore zone, representing an area of both aggregation and transition

    An integrated reconstruction of the multiannual wave pattern in the gulf of naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea)

    Get PDF
    Surface gravity waves retrieved by a network of HF (High Frequency) radars and measured in situ by an ADCP (Acoustic Doppler Current Profiler) current meter connected to an elastic beacon were used to carry out a multiple-year characterization of the wave field of the Gulf of Naples (south-eastern Tyrrhenian Sea, western Mediterranean). The aim of the work was to create a climatology of the study area and to demonstrate the potential of an integrated platform for coastal studies. The patterns recorded by the different instruments were in agreement with the wave climatology of the southern Tyrrhenian Sea as well as with previous scores for the same area. The results presented in this work also highlight seasonal and interannual consistency in the wave patterns for each site. In a wider context, this study demonstrates the potential of HF radars as long-term monitoring tools of the wave field in coastal basins, and supports the development of integrated observatories to address large-scale scientific challenges such as coastal ocean dynamics and the impact of global change on the local dynamics

    Gulf of Naples Advanced Model (GNAM): A Multiannual Comparison with Coastal HF Radar Data and Hydrological Measurements in a Coastal Tyrrhenian Basin

    Get PDF
    High-resolution modelling systems have increasingly become an essential requirement to investigate ocean dynamics over a wide range of spatial and temporal scales, and to integrate the punctual ocean observations. When applied in coastal areas, they also have the potential to provide a detailed representation of transport and exchange processes at the sub-basin scale. This paper presents a validation exercise between the surface fields generated by the regional ocean modeling system (ROMS), developed for the Tyrrhenian Sea and downscaled for the Gulf of Naples (GNAM Gulf of Naples advanced model), and a 4 year-long (2009–2012) record of high-frequency radar (HFR) data. The comparison between hourly and seasonal model results and HFR surface fields is focused on the Gulf of Naples (GoN), where an observational network of three HFR sites has been operational since 2004, and on a specific subdomain characterized by the presence of the Sarno river, a long-term ecological research station (LTER-MC) and one important canyon area. An evaluation on a transect delimiting inshore–offshore zones in the GoN is also presented. The GNAM model was also compared with in situ hydrological parameters of temperatures and salinities retrieved at the LTER-MC fixed monitoring station. According to the skill metrics, basic circulation features are accurately reproduced by the circulation model, despite some model drawbacks in terms of increment of energy content in the surface current field occurring during specific seasonal events. The results allow us to identify potential model errors and to suggest useful improvements, the outcome also confirms the unique capability of HF radar systems to provide fine-scale measurements for the validation of numerical models and to counterbalance the lack of high-resolution measurements in coastal areas. © 2022 by the authors

    Wind direction data from a coastal HF radar system in the gulf of naples (central mediterranean sea)

    Get PDF
    Results on the accuracy of SeaSonde High Frequency (HF) radar wind direction measurements in the Gulf of Naples (Southern Tyrrhenian Sea, Central Mediterranean Sea) are here presented. The investigation was carried out for a winter period (2 February-6 March) and for one summer month (August) of the reference year 2009. HF radar measurements were compared with in situ recordings from a weather station and with model data, with the aim of resolving both small scale and large scale dynamics. The analysis of the overall performance of the HF radar system in the Gulf of Naples shows that the data are reliable when the wind speed exceeds a 5 m/s threshold. Despite such a limitation, this study confirms the potentialities of these systems as monitoring platforms in coastal areas and suggests further efforts towards their improvement

    Coastal high-frequency radars in the Mediterranean - Part 1: Status of operations and a framework for future development

    Get PDF
    Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world. With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orchestrated actions. Ongoing collaborative efforts and recent progress of this regional alliance are not only described but also connected with other European initiatives and global frameworks, highlighting the advantages of this cost-effective instrument for the multi-parameter monitoring of the sea state. Coordinated endeavors between HFR operators from different multi-disciplinary institutions are mandatory to reach a mature stage at both national and regional levels, striving to do the following: (i) harmonize deployment and maintenance practices; (ii) standardize data, metadata, and quality control procedures; (iii) centralize data management, visualization, and access platforms; and (iv) develop practical applications of societal benefit that can be used for strategic planning and informed decision-making in the Mediterranean marine environment. Such fit-for-purpose applications can serve for search and rescue operations, safe vessel navigation, tracking of marine pollutants, the monitoring of extreme events, the investigation of transport processes, and the connectivity between offshore waters and coastal ecosystems. Finally, future prospects within the Mediterranean framework are discussed along with a wealth of socioeconomic, technical, and scientific challenges to be faced during the implementation of this integrated HFR regional network

    Coastal high-frequency radars in the Mediterranean - Part 2: Applications in support of science priorities and societal needs

    Get PDF
    The Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean observing systems worldwide, with more than half of the European sites located in the Mediterranean coastal areas. In this work, we present a review of existing HFR data multidisciplinary science-based applications in the Mediterranean Sea, primarily focused on meeting end-user and science-driven requirements, addressing regional challenges in three main topics: (i) maritime safety, (ii) extreme hazards and (iii) environmental transport process. Additionally, the HFR observing and monitoring regional capabilities in the Mediterranean coastal areas required to underpin the underlying science and the further development of applications are also analyzed. The outcome of this assessment has allowed us to provide a set of recommendations for future improvement prospects to maximize the contribution to extending science-based HFR products into societally relevant downstream services to support blue growth in the Mediterranean coastal areas, helping to meet the UN's Decade of Ocean Science for Sustainable Development and the EU's Green Deal goals
    • …
    corecore